Course Objectives: ZOO 511 will cover aspects of fish anatomy, biology, and taxonomy, with a primary focus on the fish ecology of the fishes of Wisconsin. Instruction will encourage a thorough understanding of the elements that affect fish and fish populations including physical attributes, the environment, and interactions among fishes and between fishes and their surroundings. We will encourage critical thinking and understanding how concepts connect throughout the course. We’ll accomplish this with reading and summarizing primary literature, identifying species, field trips, and writing a comprehensive term paper. Lab activities will include dissections, diet analysis, direct observation, computer simulations and more.

Class Goals – during this class you should:
- gain experience/improve your scientific writing skills
- gain experience/improve your ability to think and problem solve as an ecologist
- gain experience in several fisheries sampling, laboratory and data analysis techniques
- gain experience working through a research project from sampling design to writing
- gain exposure to concepts in fish evolution and the diversity of fishes, with an emphasis on fish of WI

Readings – Some classes will include discussion on a peer-reviewed article that you have read. These articles will represent either classic research that led to how we currently think about various aspects of fish ecology, or they will report cutting-edge advances in the field. We will discuss these papers on the date they are assigned and may give short quizzes on main concepts from the articles. The goals of these assignments are to expose you to the cornerstone works of fish ecology, increase your comfort level with scientific writing, allow you to practice critical reading and thinking and give you suitable examples for your own scientific term paper. Readings currently listed on the syllabus are subject to change with sufficient notice.

Fish identifications – You will be expected to be able to identify a subset of the fish species and fish families that are present in Wisconsin, and know the common names of all species and the scientific names of only several species (the family names, such as Centrarchidae, are “scientific”).

Field Trips - There are two field trips during the semester. The first is to a classic spring-fed Wisconsin trout stream and will provide the data for your scientific paper. You’ll collect and analyze the data and write a paper based on a hypothesis that you develop. The other field trip will most likely be to the Willow Creek tributary to Lake Mendota (on the UW campus). This field trip is scheduled late in the semester and will expose you to more fish collection methods and a diversity of fish species. Field trip dates may be changed last minute based on weather and conditions. Field trips will require that we leave slightly earlier (1:00pm), and we may get back slightly later than the normal class periods. We’ll do everything we can to make it back by 5:00pm. Students must attend field trips on their regular lab day. Remember to dress appropriately for the conditions. You do not need your own waders for the class, but students who have chest waders may bring their own for the field trips.

Term Paper
This course emphasizes writing more than most science courses you may have taken. Class exercises will explore literature searching, idea development, pattern recognition, statistical analyses, and the art of scientific writing. You will write two drafts of a scientific paper, review a paper from your peers, and give a presentation of the material in your paper. Anticipate spending a significant amount of time on this project.

Exams
There will be two in-class exams. Exams will be based on fish identification, analysis of figures, lectures, readings, and discussion. Exam questions will be short-answer or fill-in-the blank in a lab practical format.
Sample Assignments

Assignments

Assignment 1: Ecology of “your” fish
Each student is assigned a freshwater and marine fish (you will receive your assignment in lecture). In this assignment we want you to demonstrate that you can find, interpret and assimilate primary literature (real papers, not websites) relating environmental and biological aspects of ecology to your particular species.

Assignment 2: Create your own key
You will develop and design your own key to the families from the first half of Wisconsin fishes you are required to know for the exams. This will give you the opportunity to apply what you know about fish evolution and functional morphology as well as help you study your fish identifications for the practical.

Assignment 3: Review a peer’s paper
The peer review process is critical to the progress of science. More often than not your peers will have valuable insight regarding your research that you may not have considered. As scientists, we send our papers through both a friendly (scientists we know) and official (journal editors) review process. You will experience both the roles of reviewer and reviewee by exchanging paper drafts and reviewing a classmate’s paper while yours is also being reviewed.

Assignment 4: Bioenergetics Exercise
Bioenergetics 3.0 is a program developed here at UW-Madison by researchers in the Center for Limnology. It uses known species-specific physiological characteristics and allows you to input attributes of fish that you’ve measured, such as growth. You can then explore various aspects of ecology to understand how variables such as water temperature or food consumption influence fish metabolism and growth.

Research Project
You will complete an original research project from start to finish. You will collect data (on our Badger Mill Creek field trip), create hypotheses, present a proposal for the project to your classmates, analyze your data and draft a scientific manuscript (you’ll submit 3 drafts total). Along the way you will review a proposal and paper from your classmates (Assignment 3) to provide them with suggestions for improving their project. You will also benefit from feedback that your peers give you, which you are expected to incorporate into your research approach.

Plagiarism
Plagiarism will not be tolerated. Consequences will be severe and all cases will be reported to the Dean of Students office. If you need clarification on what constitutes plagiarism see http://writing.wisc.edu/Handbook/QuotingSources.html. Science is a collaborative effort and we encourage students to work together on assignments/projects. However if you do work collaboratively, you need to indicate the names of the people you worked with on that assignment, and your final product must be your own original work.
Sample Grading Scale:
Your grade will be based on exam scores, the scientific paper, quizzes, assignments and class participation.

<table>
<thead>
<tr>
<th>Item</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Midterm Practical</td>
<td>60</td>
</tr>
<tr>
<td>Final Practical</td>
<td>60</td>
</tr>
<tr>
<td>Quizzes (4 total, 10 points each)</td>
<td>40</td>
</tr>
<tr>
<td>Scientific Research Project</td>
<td></td>
</tr>
<tr>
<td>Hypotheses</td>
<td>5</td>
</tr>
<tr>
<td>Proposal & Bibliography</td>
<td>10</td>
</tr>
<tr>
<td>First Draft (for peer review)</td>
<td>20</td>
</tr>
<tr>
<td>Second Draft (for TA review)</td>
<td>30</td>
</tr>
<tr>
<td>Final Draft</td>
<td>50</td>
</tr>
<tr>
<td>Presentation</td>
<td>20</td>
</tr>
<tr>
<td>Assignment 1: Ecology of your fish</td>
<td>20</td>
</tr>
<tr>
<td>Assignment 2: Create a dichotomous key</td>
<td>20</td>
</tr>
<tr>
<td>Assignment 3: Review a peer’s paper</td>
<td>15</td>
</tr>
<tr>
<td>Assignment 4: Bioenergetics</td>
<td>30</td>
</tr>
<tr>
<td>Class Participation</td>
<td>20</td>
</tr>
<tr>
<td>TOTAL</td>
<td>400</td>
</tr>
</tbody>
</table>

SAMPLE WEEKLY TOPICS

Week 1
Lecture: TA and student introductions, Fish Anatomy, intro to wiscfish, fishbase and Becker Key
Lab: Dissections, learn internal and external anatomy
Assignments & Readings: None

Week 2
Lecture: Evolution and Functional Morphology, First ½ of WI Fishes list, how to find and read articles (web o’ science and Google Scholar)
Lab: Observation, describe differences in the morphology of the first ½ of WI fish families
Assignments: Ecology of Your Fish (due week 3), Construct Your Own Key (due week 4)
Readings: None

Week 3
Lecture: Age and growth
Lab: Scales, otoliths & calculating growth
Assignments: Remember Construct Your Own Key is due week 4
Readings: Kitchell 1977 on bioenergetics modeling (for Quiz 1 next week)
ECOLOGY OF YOUR FISH DUE

Week 4 TAKE QUIZ 1
Lecture: Bioenergetics, Electrofishing techniques and safety
Lab: Bioenergetics modelling, discuss Kitchell 1977
Assignments: Bioenergetics assignment (due week 6)
CONSTRUCT YOUR OWN KEY DUE
Week 5 FIELD TRIP ARRIVE AT 1pm
BADGER MILL CREEK FIELD TRIP
Assignments: hypotheses/questions for research project (due at the end of lab week 6)
Readings: TBD

Week 6
Lecture: Organizing and analyzing data in Excel, scientific communication
Lab: Data entry & statistics in Excel, **finalize hypotheses/questions** (submit today and your TA will return comments to you before the weekend)
Assignments: Short (1-1.5 page) research proposal with bibliography (due week 7)
BIOENERGETICS ASSIGNMENT DUE

Week 7
Lab: Global fish diversity; group discussion of proposals
Optional review for midterm exam – TAs available for review, questions, etc. In prior years, students attending optional review sessions have performed better on the exam.
Assignments: study for midterm exam! First draft of paper due Week 10 (Apr. 1,2)
PROPOSAL DUE

Week 8
MIDTERM EXAM
Assignments: First draft of paper due Week 10 (Apr. 1,2)

Spring Break, No Class

Week 9
Lecture: Foraging and diets
Lab: Diet analysis
Assignments: First draft of paper due week 10
Readings: Carpenter and Kitchell 1985 on trophic cascades in lakes (for Quiz 2 next week)

Week 10 TAKE QUIZ 2
Lecture: Population dynamics, the peer review process
Lab: Mark recapture, discuss Carpenter and Kitchell reading
Assignments: Peer review assignment (due week 11)
Readings: Moyle and Light 1996 on biological invasions of freshwater (for Quiz 3 next week)
PAPER FIRST DRAFTS DUE

Week 11 TAKE QUIZ 3
Lecture: Exotics and communities, 2nd half of WI fish species, scientific writing & revising
Lab: Observing fish from the second half of the list, discuss Moyle and Light 1996
Assignments: Second draft of paper due Week 12
PEER REVIEW ASSIGNMENT DUE

Week 12 FIELD TRIP ARRIVE AT 1pm
FIELD TRIP LOCATION TBD
Assignments: Final presentations on Week 14. Final draft of paper, hardcopy (w/ drafts attached) due by 5 pm Monday May 12th
Readings: Worm et al. 2006 on global fisheries collapse (for Quiz 4 next week)
PAPER SECOND DRAFTS DUE
Week 13
TAKE QUIZ 4
Lecture: Fisheries crisis & fishery techniques
Lab: Discuss Worm et al., Meet w TA re. paper drafts
Assignments: Final presentations next week

Week 14
Lecture: Final project presentations; final exam review
Lab: Play “Fish Jeopardy” to review for final
Assignments: Study for final! And write the paper!

Week 15
FINAL EXAM
Assignments: Final draft of paper (hardcopy w/ all drafts attached) due by 5pm

Suggested References
Though there is no textbook for this course, these books are great references on the topic of fish ecology.

Available Online: http://digicoll.library.wisc.edu/cgi-bin/EcoNatRes/EcoNatRes-idx?id=EcoNatRes.FishesWI

Great websites:
Fishbase: http://fishbase.org/ Web of Knowledge: http://apps.isiknowledge.com/